WAVY TAYLOR VORTICES IN PLANE COUETTE FLOW~
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Abstract. Path-following techniques applied to a spectral approximation of the solution of the Navier-Stokes
Equations have revealed the existence of a new class of solutions to the plane Couette flow problem.
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1. Introduction. A long-standing problem in fluid mechanics is understanding the transitions
from laminar to turbulent flow. This problem has been studied in many specific cases. Plane Couette
flow, the case of interest in this paper, is the flow of an incompressible viscous fluid between infinite
parallel shearing plates.

Experimentally, plane Couette flow sustains turbulence for large enough Reynolds number (Re >
Re; = 1440 £ 40) (see [7]). For Reynolds numbers less than the transition number (Re < Re;) the
flow becomes a laminar flow with the velocity depending only on the distance from each plate.
Theoretically and numerically, all studies seem to imply linear stability of this laminar flow for all
Reynolds numbers (see [6] [1]). The lack of bifurcations or other known solutions for plane Couette
flow make the study of this transition difficult.

In contrast, Taylor—Couette flow, the flow between infinitely long coaxial cylinders, bifurcates to
other flows for large enough Reynolds numbers. If the gap between the cylinders is small compared
with the average radius of the cylinders, Taylor-Couette flow is approximated by plane Couette flow
in a tumbling channel. This limit is discussed in Appendix A.

New solutions of the plane Couette flow problem have recently been found (see [3],[4],[5]) by
studying plane Couette flow in a channel tumbling with speed €2 about the z axis (see Fig. (1.1)).
By varying the tumbling rate, bifurcations from one- to two-dimensional solutions and subsequent
bifurcations from two- to three-dimensional solutions are found. The two—dimensional solutions look
like Taylor vortices in Taylor—Couette flow. The axis of each vortex is aligned with the velocity of
the bounding plates. The three—dimensional solutions bifurcating from the vortex solution look like
wavy Taylor vortices in Taylor—Couette flow. The tumbling rate, €2, can be decreased to zero while
retaining the three—dimensional structure of the solutions.

The use of Chebyshev polynomials and the path following techniques of H. B. Keller [2] provide
better-resolved solutions and make it possible to find the minimum Reynolds number at which these
solutions exist. This minimum Reynolds number (Re = 470) is about one third the Reynolds number
at which the flow experimentally sustains turbulence. Linear stability analysis of this flow implies
that the solutions are probably unstable.

Formulation. Define

. u(z,y, z)
iy = | vy o)
w(z,y,2)

to be the velocity of the flow at location (z,y, z) (see Fig. (1.1)). Define p(x,y, z) to be the pressure
of the flow. The Navier—Stokes equations for traveling wave solutions between parallel plates rotating
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Fia. 1.1. We study flow between infinite parallel shearing plates. The plates are tumbling with angular velocity,
Q. The linear velocity profile, V(x), is stable for all shear rates.

about an axis parallel to the z-axis with speed € are

(1.1) 0=—Re (U -V)U 4+ VU —Vp+29(: x U)
tey0,U +¢,0,U,
(1.2) 0=V-U.

Here, 2, is the unit vector in the z direction, and ¢, and c, are the wave speeds of the flow in the y and
z directions, respectively. The nondimensional Reynolds number, Re, is the velocity difference of the
plates times the distance of the gap between the plates divided by the viscosity. (The wave speeds
of all solutions in this paper are found to be zero.) The solutions of these equations are required to
satisfy no-slip boundary conditions at the plates, which move with speeds +1/2. Periodic boundary
conditions are imposed in the y and z directions, parallel to the plates. With unit vector y in the y
direction and periods Ay and A, in the y and z directions, respectively, these boundary conditions
are

(13) (502 = 435
(14) 0(500.2) = =50
(1.5) U, y+ Ay, 2) = Ula,y, 2),
(1.6) plz,y+ Ay, 2) = ple,y, 2),
(1.7) Uz, y, 24+ X.) = Uz, y, 2),
(1.8) ple,y, 2+ X)) = plx,y, 2)

The shear force at the lower plate,

(1.9) ()= —— //\yd /A’d 9 1y2,y,2)
- T - AyAZ 0 y 0 Zax ’y’z’

is used as a parameter of the solution in the continuation procedures.
The well-known Couette flow,

0

(1.10) [j(a:,y, 2=\ —z |,
0
= _Q$2a



satisfies these equations for all Re, Ay, A,, ¢y, and ¢,. This paper is concerned with paths of solutions
that bifurcate from this branch of solutions.

Section 2 describe the solution approximation scheme. Section 3 describes the methods used to
follow paths of solutions and to switch branches of solutions. Additional phase constraints (which
are necessary because of the periodic boundary conditions) are also described. Sections 4 and 5
describe the solutions and their linear stability.

2. Approximation of Velocity and Pressure Fields. The solutions are expanded in terms

of

Crmn(z,y, 2) = Ti(22) cos(mayy + na, z),
Stmn (2, y, 2) = Ti(22) sin(mayy + ne, z),

Al,m,n = (Cl,m,n + Z.Sl,m,n) = Tl(?x)ei(m%yﬂm,z).

Here, oy = i—”, and a, = i—” are the y and z wave numbers, respectively. Each of u, v, w, and p are
Y -
approximated by finite expansions of the form

M N

Q(xaya Z) = Z Z Z ql,m,nAl,m,n($aya Z)

=0 m=—M n=—N

Here, ¢ represents u, v, w, or p. As a result, the approximated U and p are determined by a total of
AL+ 1)(2M 4 1)(2N + 1) coefficients. The same notation for the approximations and the solutions
is used in this paper.

These approximations do not (in general) satisfy the Navier—Stokes equations. As a result, only
certain projections of the Navier—-Stokes equations are required to be zero. Define the inner products,

1/2 de >\y A
2.1 <Almn,f>:/ 7/ dy/ dz(Apmn - f),
@1) 172 V1—42% Jy 0 ( )
Ay A, '
(2.2) (eflmayytnazz) gy :/ dy/ dz(efmevytnazz) gy,
0 0

Define M to be the right-hand side of Eq. (1.1). Then the 4(L +1)(2M 4 1)(2N + 1) equations that
the approximations are required to satisfy are the following:

) 0<I<L-2,
(2.3) < Apnn, M > =04 |m| < M,
In] < N

) 0<I<L-2,
(2.4) < Apn, VU >=04 |m| <M,
In] < N
[m| < M,

(2.5) (eftmostness) {4172,y 2) + 1/29) = 0{ [n] < N.

In addition, since the periodicity in y and z introduces a two-dimensional nonuniqueness, the fol-
lowing two phase constraints are imposed on the solutions:

(2.6) < Coo1, u(z,y,2) >= 0,
< So10, w(x, Y, Z) >= 0.
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Equations (2.3)-(2.5) are referred to as
F(u,A)=0

in the rest of this paper. The solution u is the set of coefficients that determine U and p. The
parameter A is typically €2, Re, oy, or «,. Both of the phase constraints are trivially satisfied on
the Couette flow branch of solutions. Phase constraint (2.6) is imposed on the vortex branch, and
both phase constraints are imposed on the wavy vortex branch. When the phase constraints are
imposed, they are adjoined to F'(u,A). As a result, additional quantities are necessary. Hence, the
wave speeds ¢, and ¢, are introduced and solved for u (in addition to the coefficients).

3. Path Following. Continuation methods are used to approximate the solution path
I'={(u,)): F(u,A) =0}.

Three distinct methods are employed, depending on the presence of folds or bifurcations. In the
case of regular path segments the algorithm used is as follows:
Step 1. Start with an initial solution, (ug, Ag). Construct the Jacobian

8F(u0, Ao)
Ou

Step 2. Construct the initial iterate and initial parameter with one of the following:
e constant value continuation: A; = A;_1 + A, u? = U;j_1
e secant continuation: A; = A;_1 + 8,
A=A
w) = w1 4 o (i — o).
Step 3. Compute the special Newton iterates (indexed by v = 1,2, ...),

o=

’L—l_>\l—2
Fe” = —F(uf; ),

v+1 _ v v
u; =u; + ¢,

until |[eN]];, < e.
Step 4. Set u; = ufv'l'l. If the parameter A; is still in the desired range, and the number of
iterations is small (N < 30), return to Step 2.

This algorithm may fail for several reasons. One is that the step §A is too large. In this case,
decrease the step size. Another reason the algorithm may fail is that the iterates in step 3 converge
too slowly. In this case, recompute the Jacobian. Lastly, the solution path may trespass a bifurcation
point or may step beyond the solution path at a fold. In this case, use one of the following algorithms
for folds or bifurcations.

At a fold point the Jacobian is singular. Thus, as it is approached, the shear force (1.9) at the
lower plate is introduced as a new parameter. (In Taylor-Couette flow, 7 corresponds to the torque
on the inner cylinder.) To continue the solution past the fold, adjoin the equation

(3.1) T(u) = 7,

and seek solutions of the expanded system:

(3.2) Gu(mi), Mm); ) = ( P;((Z((Tri))’)A—(T;)') ) =0

By varying 7;, a path of the form
[ = {(u(r), M), 7) : Gu, A\, 7) = 0,72 < 73 < T3}

is generated. This leads to the following algorithm for finding a segment of the path near a fold:
4



Step 1. Start with an initial solution, (ug, Ag). Construct the Jacobian

FO FD

0 0. 07 _

Gx:[G“'GA]_[TZ OA]'

Step 2. Construct the initial iterate and new parameter with one of the following:
e constant value continuation: 7, = 7;_1 + 67, u? = uj_1, /\? =X_1

e secant continuation:

T = Ti—1+ 0T,

T — Ti—

0 2 i—1

u; = iy + ———— (U1 — Ui—2),
Ti—1 — Ti-2
T — Ti—

0 _ [} 1—1

A = Aimy A+ T (o1 = Aisa).

Ti—1 — Ti—2

Step 3. Compute the special Newton iterates (indexed by v = 1,2, ...),
o @Y _( ~Fur)
(i) =( i)

v+1 _ v v
u; =u; + ¢,

A= 4

until |[eN]];, + [IV] < e.
Step 4. Set u; = ufv‘i'l,/\i = /\fv‘l'l. If 7; is still in the desired range, and the number of
iterations N is small, return to Step 2.

When the iterations in step 3 fail to converge, return to continuation in A.

To switch from Couette flow (1.10) to the vortex solution, first locate the critical € at which
the Jacobian is singular (Re = 600,92, = 1.43, o, = 3.1163). Since the Navier—Stokes equations are
autonomous in z and the solution is to be periodic in z, it follows that the Jacobian has a two-
dimensional null space. Thus two constraints can be imposed. One is the phase constraint (2.6),
which can be rewritten as

3 dx Ay As
3.3 o.(u)= | —=_ [ 4 dz cos(272 /A, Yu(z, y, 2) = 0.
(3.3) (u) /_% m/o y/o zeos(2mz /A ) u(z, y, z)

The other constraint requires the solution to have a constant component in the direction of the null
vector of the Jacobian F),. Because two new constraints have been imposed, the two parameters Q
and ¢, are freed. To solve this augmented system, we use a new algorithm:

Step 1. Accurately find the parameter value A* at which

OF (u( M), A*)

Fr =
“ ou

is singular.
Step 2. Find the right null vector, ¢, of the singular Jacobian with ®,(¢) = 0.
Step 3. Construct an initial guess for a solution on the new branch, u{ = u(A*) + €¢.
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Step 4. Compute the Newton iterates for the augmented system,

Fuy ey, A) 0
q)z(u) 0

Here, an additional constraint,

5 Ay As
(3.4) O, (u) = /_% %/@ dy/o dzsin(2my/ Ay )w(z,y, z) = 0,

has been adjoined, and the parameter ¢, has been freed as a variable. To compute solutions along
the vortex branch, use the algorithm to find the segment of the path near a fold or use the algorithm
for a regular path but use the augmented system of equations,

H(u,e., ) = ( e ) =0,

instead of F(u,A) = 0. Finally, to switch paths from vortex to wavy vortex solutions, use the
following algorithm:
Step 1. Accurately find the parameter value A* at which the Jacobian

(Hu(w(X7), ¢, A7) [ He, (u(A7), €2, A7)

is singular.

Step 2. Find the right null vector, ¢, of the singular Jacobian with ®,(¢) = 0.

Step 3. Construct an initial guess for a solution on the new branch, uf = u(A*) + €¢.
Step 4. Compute the Newton iterates on the fully augmented system,

F(u, ey, cs, A) 0
¢-u | o
q)z(u) - 0
Py (u) 0

To compute solutions along the wavy vortex branch, use the algorithm for the path segments on a
regular path or near a fold with the system

Flu,cy,cs, )
I(u, ¢y, c5, X)) = D, (u) =0,
Py (u)
instead of F'(u, A) = 0.

4. Couette Flow to Vortices. At Re = 600,Q. = 1.43, o, = 3.1163, the paths of Couette flow
and vortex flow intersect. The analysis in Appendix B shows that the locations of the bifurcations
from the Couette solutions are a function of the Taylor number

T = 2Q(Re — 29)

and the wave number «,. The locations of these bifurcation points are not independent functions
of the Reynolds number and €2. The Taylor number at which the Jacobian is singular is called the
critical Taylor number, 7.

Note that the Taylor number is quadratic in €2. Thus, for large enough Reynolds numbers,

Re > 2\/ITC,
6
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Fia. 4.2. T. vs A, when the z-direction 1s spanned by 38 Chebyshev polynomials

there are at least two singular points. In the generic case, there are an even number of singular
points.

T. varies with o, = 27/A,; however, it does not vary with «,. See Figure 4.1 for a graph of
T, as a function of a,. Since the boundary conditions are periodic, if the Jacobian is singular at
(T.,A;) then the Jacobian is also singular for all periodicities that are integral multiples of A, .,
namely, (T,,nA,). Figure 4.2 is a graph of the critical Taylor number against the periodicity A,.
Only the first six multiples of the fundamental mode are shown.

To compute these values of the critical Taylor number, fix the Reynolds number at Re = 600.
At different values of the wave number, «,, increase Q from zero (in steps of .05). Determine the

7



3 T

2.5 Wéwy Vortex

Vortex

Couette

Fia. 4.3. Shear stress as a function of Q. Re = 600,ay = 1.6,a, = 3.0. The lower intersection of vortex
and wavy vortex branches 1s a bifurcation. The upper intersection of the vortex and wavy vortex branches is only
graphical. (The flows are not the same at this point.) There are two wavy vortew solutions at @ = 0. The solution
with large shear stress is called the upper branch solution, and that with low shear stress is called the lower branch
solution. The resolution is (L, M,N) = (14,3, 3) in this picture.

value of Q at which the Jacobian has the smallest (magnitude) determinant. Then compute the
Taylor number using 7' = 2Q(Re — 2Q). Compute the critical Taylor number for different values
of the wave number «,. This gives the function T¢(«). Lastly, compute Newton iterations on the
minimum problem,

ot

Jar, -

0,

to find the minimum critical Taylor number,
T min = 1707.7618
when the wave number is
a, = 3.1163/n.

At the bifurcation point, switch to the new branch of solutions (the vortex branch by the methods
discussed in Section 2). While the Couette solution has a constant shear force of 1.0 for all values
of ©, the new branch of solutions (labeled “Vortex” in Figure 4.3) increases in shear force with
increasing 2.

These vortices have some symmetries. The solution branch varies only with x and z. There is
no y variation. A graph of the mean flow in the y direction is shown in Figure 4.4, and the flow
perpendicular to y is shown in Figure 4.5.

Follow the vortex solution from € = 1.43 where it bifurcates from Couette flow to € = 13. (See
Fig. 4.3.) During this continuation the Jacobian is singular at @ = 2.1725, signaling a secondary
bifurcation. The new branch (labeled “Wavy Vortex” in Fig. 4.3) of solutions bifurcating from the
vortex branch is discussed in Section 5.
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Fia. 4.4. The mean (over a period in y and z) of the flow in the y direction for the vortex solution at Re=600,
Q =13, a; = 3.0.

Fia. 4.5. The velocity field in the xz plane for the vortex solution at Re=600, Q = 13, a, = 3.0. The lower
plate 1s shearing out of the paper on the lower edge of the image.

At lower Reynolds numbers (i.e., Re < 250), the full path of vortex solutions can be computed.
At wave number «, = 3.0, the critical Taylor number is 7, = 1711.28. Thus, at Reynolds number
85.0, the two values of €2 that satisfy the equation

T, = 2Q(Re — 29)

are Q = 16.377 and = 26.123. As can be seen in Fig. 4.6, one vortex solution branch intersects
the Couette flow branch at these two points.
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FiG. 4.6. Shear stress vs. {1 at Re = 85.0, 0> = 3.0,y = 1.6. This branch of vortices shows that the two values
of Q satisfying 2Q(Re — 2Q) = T correspond to bifurcation points on the same branch of vorter solutions.

Second Bifurcation Branch from Couette Flow to Vortex Flow
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20500 - n
20000 |- n
19500 - n
T.2 19000 - n
18500 - n
18000 - n
17500 - n

17000 | | | | | | | |
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Fia. 4.7. Couette flow bifurcates to a different path of solutions at higher Taylor number. This second branch
of critical Taylor numbers has a minimum near 17700 when o s near 5.4.

At the same wave number, o, = 3.0, there is a sequence of critical Taylor numbers, say, T, ,,v =
1,2, ..., that satisfy Eq. (B.4). The next two values of the critical Taylor number are 7, 5 = 26, 100
and T, 3 = 182,300. These critical Taylor numbers also vary with «,. Figure 4.7 shows the relation
between 7. » and the wave number, o,. Note that the minimum value of 7T, 5 is nearly ten times the
minimum value of T, 1 (graphed in Fig. 4.1 and labeled T%.)

5. Vortices to Wavy Vortices. On the vortex solution branch bifurcating from Couette
flow, the Jacobian is singular at parameter values Re = 600,Q2 = 2.17,ay = 1.6,a, = 3.0. The
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Fia. 5.1. The mean flow in the y direction of the lower branch solution as a function of distance from center
of channel. Re =600,0y =1.6,0, =3.0,Q=0,7=1.7.

TABLE 5.1
The lower branch wavy vortez solution (at & = 0) is resolved well enough that the shear stress of the solution
at the lower plate has a relative error of less than 4%.

Resolution Shear Stress
L M,N at Lower Plate
13,3,3 1.72177413
14,3,3 1.69405548
15,3,3 1.70084151
16,3,3 1.69987208
17,3,3 1.69936109
18,3,3 1.69959818
14,3,4 1.68283399
14,3,5 1.66029900
14,4,4 1.66777241
14,4,5 1.67317174

new path of solutions is labeled “Wavy Vortex” in Fig. 4.3. Note that the path has a fold point
(r = 1.86,Q2 = —2.07) and two solutions at = 0. Call the solution (at = 0) with larger shear
stress the upper branch solution and the solution with smaller shear stress the lower branch solution.
Table 5.1 indicates that there is a relative error of less than 4% in the shear stress for resolutions
above (L, M, N) = (13,3,3).

Figure 5.1 shows the mean velocity in the y direction for comparison with the vortex solution
(Figure 4.4). Figure 5.2 shows the 2-z cross sections of the velocity field for different values of y.
Compare the vortex solution in Figure 4.5.

5.1. Minimum Reynolds Numbers. The two solutions at €2 = 0 are functions of 7, oy, av,
and Re. To find the values of these parameters at which the Reynolds number is a minimum, let
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Fia. 5.2. Cross sections (at y = 0,5, 55 %, T,Q?T) of the welocity field of the lower branch wavy vortex

solution in the xz plane. The left-bottom cross section is at y = 0 and the upper-right cross section is at y = 2.
Re = 600,00y = 1.6,a, = 3.0. The lower plate is shearing out of the paper at the bottom of each cross section.

Re = Re(T, oy, «v;), and consider the problem

F(u(m, ay, o), Re(mo, aty, vy))
(5.1) Q —0.

T(u) — 1o

Figure 5.3 shows the variation of Reynolds number with shear stress (for oy, = 1.6, 2, = 3.0).
The path segment in Figure 5.3 includes the two solutions in Figure 4.3 at 2 = 0. For these values
of the wave numbers; the minimum Reynolds number is 520; however, lower Reynolds number flows
occur at different wave numbers.
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Shear Stress vs. Reynolds at ay = 1.6,a, = 3.0
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Fia. 5.3. As the Reynolds number decreases from 600.0, the upper and lower branches of the € = 0 wavy
vortices coalesce and disappear.

To find the (local) minimum Reynolds number for all wavenumbers and shear stresses, solve the
minimum problem

(5.2) Jar | =0

by Newton’s method. Start the Newton iterations with the solution at 7 = 1.85,ay = 1.6, 0, = 3.0
in Figure 5.3. Each step of Newton’s method requires 42 solutions of the Navier—Stokes equations
in order to evaluate the finite-difference approximations of the derivatives appearing in the New-
ton iterations for this minimum problem. The minimum is found at the following values of the
parameters:

Re =470,
T =1.70,
ay = 0.96,
a, = 2.00.

These values are calculated with a resolution of (L, M, N) = (14,3, 3). The solution path (7 vs Q)
for these values of the Reynolds number and wave numbers is shown in Figure 5.4.

5.2. Linear Stability. The stability of the computed steady solution is determined by the
usual linear stability analysis applied to the unsteady equations

ov S, 5 - ~
(5.3) - =~ Re (V-VV + V2V = Vp+2Q( x V),
(5.4) 0=Vv-V.
Here the time has been scaled by the square of the channel width and viscosity. This scaling leads
to the eigenproblem

(5.5) Ae=—Re [(Va-V)E+ (8- V)Va] + V2E—Vp+2Q(2 x &)
13



Shear Stress vs Rotation at Re = 467, oy = 0.9603, o, = 2.0032
3 T |

Fia. 5.4. Solution path with resolution (L,M,N)=(14,3,3) at minimum Reynolds number Re=467. o, = .96,
o, = 2.0.

-

(5.6) 0=V-¢

where € and p are the perturbations to U and p. They are approximated in the same way as U and
p. Dirichlet boundary conditions at the x boundaries and periodic boundary conditions in y and z
are applied. This process leads to a generalized eigenvalue problem of order 1454 (for (L, M, N) =
(14,3,3)). There are some eigenvalues at infinity for generalized eigenvalue problems; however,
numerical analysis (in finite precision) perturbs the eigenvalues at infinity to large eigenvalues. In
particular, D projections of Eq. (5.5) and F projections of Eq. (5.6) lead to D — F eigenvalues not
“at infinity.” At resolution (L, M, N) = (14,3,3), there are 968 projections of Eq. (5.5) and 360
projections of Eq. (5.6). Thus, there are 588 meaningful eigenvalues and many meaningless large
eigenvalues. Note that unstable modes correspond to eigenvalues with Real(A) > 0 and stable modes
correspond to eigenvalues with Real(A) < 0. These eigenvalues are computed with EISPACK.

On the lower branch the parameters are Re = 600,a, = 1.6,a, = 3.0,Q2 = 0, and 7 = 1.694.
Figure 5.5 shows the scattered eigenvalues of large magnitude. Figure 5.6 shows Figure 5.5 scaled
by 100. There is a cluster of 588 eigenvalues near the origin. This cluster of eigenvalues is shown at
much larger scale in Figure 5.7. Note that there is one eigenvalue in the right half plane, and hence
the solution is unstable.

Figure 5.8 shows the eigenvalues of the upper branch solution. The pair of unstable eigenvalues
suggests that there may have been a Hopf bifurcation on the path between the lower branch solution
and the upper branch solution.

Lastly, at the minimum Reynolds number solution, the eigenvalues (Figure 5.9) are all in the
left half plane except for the two eigenvalues that are nearly zero. It is probable that there is one
unstable mode on the lower branch of solutions, as well as two unstable modes on the upper branch
and two neutrally stable modes at the minimum Reynolds number solution.

6. Discussion. Nagata [5] finds new solutions to the equations for plane Couette flow. By using
a different approximation scheme in a primitive variable formulation and path-following techniques,
these solutions are confirmed. Two criticisms of these solutions have been raised by experimenters [7].
The first criticism is of the resolution of Nagata’s solutions; however, these solutions exist at relatively
high resolutions (see Table 5.1). The second criticism is a question about the stability of the solutions.
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Fia. 5.5. All the eigenvalues that we compute (including those perturbed from infinity) of the lower branch wavy
vortex solution. We magnify the center of this graph by a factor of 100 to get the next figure.
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Fia. 5.6. The eigenvalues near the origin of the previous figure. There are 588 eigenvalues clustered near the
origin. This cluster of eigenvalues is shown (magnified) in the next figure.

These solutions are not stable; however, there may be values of the parameters, Re, o, and «, for
which the solutions are stable (see Figures 5.7, 5.8, and 5.9). There are probably no wavy vortex
solutions for Reynolds numbers less than 470.

The vortex branch of solutions bifurcates from and reconnects to the Couette flow branch (see
Figure 4.6). This behavior indicates that in an experiment, as the Coriolis force is increased, Couette
flow would bifurcate to vortices and the vortices would subsequently bifurcate back to Couette flow.
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Fia. 5.7. Figenvalues of lower branch solution near the origin. Note the one unstable eigenvalue to the right of
the imaginary axis. The parameter values are Re = 600,ay = 1.6,0, = 3.0,7 = 1.7.
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Fia. 5.8. The eigenvalues of the upper branch solution has two unstable “Hopf pair” eigenvalues.
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Fia. 5.9. The eigenvalues nearest the origin for the solution at Re = 470, cry = 0.96, v, = 2.00.
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A. Relation of Taylor—Couette Flow and Couette Flow.

A.1. Taylor—Couette Flow. Taylor-Couette flow is the flow between concentric cylinders. If
the gap width, a, between the cylinders is negligible compared with the average of the radii of the
cylinders, b, then the equations governing Taylor-Couette flow are approximately the same as the
equations for flow between parallel plates in a rotating frame.

The incompressible Navier—Stokes equations in cylindrical coordinates are

ov, o = Ve? P , 20V V,
Ve S ViVe  10P 9 20V, Vs
(A-2) 5 TV V)Ve + = —;W‘i"/(v Vo + 20 p—z),
A% - = oP
(A.3) S (VY= 3¢+,
= o 10 1 oVy. 0V,
where
- = 0 V3o 0
G TR TR
10, 0 I 9*
Vi o (p)+ ——5 + —5-

The domain is

p € [Ro, Rq], 0 € [-00, 0], ¢ € [-00, 0],
and boundary conditions are
(A.5) V(Ro,0,¢,7) = Vo, V(R1,0,(,7) = W10,

where 6 is the unit vector in the @ direction.

A.2. Change of Variables. Use the width of the gap, a, between the cylinders to scale the
lengths in the problem. Scale the time by a?/v. The velocity scale (V) is chosen later. Use a
reference frame that rotates with the average rotation rate, w, of the cylinders. FExplicitly, the

change of variables is as follows:

Vi+Wo
26

_ Ri+ Ry
- 2

b ,a:Rl_ROa

p—0b b(f — wr) ¢
xr = Yy = J 2= =
a a

bl

vT

t = —
a?’

Vﬁ($ayazat) = V(pagaCaT) - nga
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where

u; = —Re (Uﬁ)u— 11}2690 + 2Q —g—i
5 2
(A.6) +H(Viu— mg—; - u:ﬁ)zu),
vy = —Re (Uﬁ)v 1:1_“;: —2Qu — 1_:@2—5
A 0 ey~ (T e
wt:—Re[(U V) ]—g—i
(A.8) +H(Vw),
(A.9) 0=ﬁ~ﬁ=§—z+1f€x“+1i€x2—;+g—f’

U~ﬁ—ui—|— o vi—l—wi
Oz 14+ex) dy 9z’

R )
C0x2  (1+ex)20y? 927 14 ex O’

) _

_ 4 9o Y, Re= Y2
b v v

ze[-1/2,1/2]y € [-00, 0],z € [—00, o0].

€

The boundary conditions are the following:

(A.10) w(x1/2,y,2,1) =0,

1 /=W Q
A1l 1/2 t) = +— - —
(A1) w120 =25 (U0 F o
(A.12) w(+1/2,y,2,t) = 0.

A.3. Thin—Gap Limit. In the limit ¢ — 0, these equations reduce to the Cartesian equations
satisfied by a fluid between parallel plates in a rotating frame:

(A.13) i, = —Re(ii - V)i — 2Q(2 x i) — Vp + V24,
(A.14) 0=V-

3
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The rotation, €2, is about the z axis which is the axis of rotation of the cylinders. The boundary
conditions are the following:

(A.15) w(x1/2,y,2,1) =0,

Vi =V Q
(A.16) v(£1/2,y,2,1) = :|:2 ( - ) F TRe’
(A.17) w(+1/2,y,2,t) = 0.
When

Q=0,V=V-W,
the equations are satisfied by plane Couette flow.

B. Derivation of the Taylor number. Start with the Navier—Stokes equations linearized
about a shear flow (V, p); that is, seek flows of the form (V + € p + p), where V varies only with
and €is “small.” Dropping quadratic terms in € leads to the following:

(B.1) 0=—Re((V-V)e+ (- V)V)=2Q(: x &) = Vp + V¢,
(B.2) 0=V-¢

where

(B.3) d+1/2,y,2) = 0.

Seeking solutions in the form

ez () cos(az),
= ey(z) cos(az) ,
€, (x)sin(az)

p = p(x) cos(az),

17 =y
with Eqgs. (B.1)-(B.3) implies
1 e,
€ =———=,
a Oz
= 29@2(61‘2 ),
1 9% N
r=algm =%
Then €, must satisfy the linear eigenvalue problem
62
(B.4) 0="Ta’, + (w — az)?’ex,
(B5) @172 = )12 = (5 — a1/ = 0
' ‘ T 0" - O ‘ -
where
(B.6) T = 2Q(Re — 2.
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